

Calm CP

Decreases cortisol levels and provides ingredients important for calm, sleep, and management of blood sugar*

Item Number	Dosage Forms	Available Sizes	Serving Size
2099	Capsules	60 Capsules	2 Capsules

Key Ingredients

Lagerstroemia speciosa (Banaba) leaf extract (2% corosolic acid)

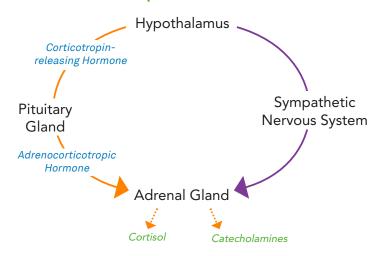
- Corosolic acid selectively inhibits 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1)^{1*}
- 11β-HSD1 catalyzes the conversion of cortisone into cortisol²

Phosphatidylserine

- Component of cell membranes important for receptor-mediated interactions^{4*}
- Phosphatidylserine is thought to interact with cell membranes in order to dampen hypothalamic signaling and regulate the stress response^{5*}

Glycine

- Major inhibitory neurotransmitter that crosses the blood-brain barrier^{6*}
- Binds receptors that regulate temperature during sleep^{7*}


Taurine

- Neuroprotective amino acid that provides antioxidant protection^{8,9*}
- Demonstrates GABA-A agonist activity^{10*}
- GABA is the primary inhibitory neurotransmitter in the brain important for calm and sleep¹¹⁻¹³

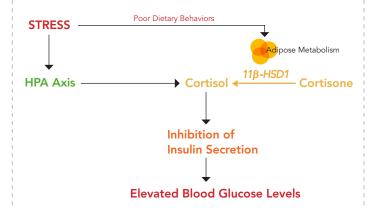
The Science

- In response to **stress**, the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis signal to the adrenals to release catecholamines (norepinephrine and epinephrine) and cortisol¹⁴
- Prolonged stress is associated with dysregulation of the HPA axis, which can affect catecholamine and cortisol levels¹⁵

NeuroAdrenal Response

Green = Biomarker

Blue = Hormone


Orange = Hypothalamic-Pituitary-Adrenal (HPA) axis

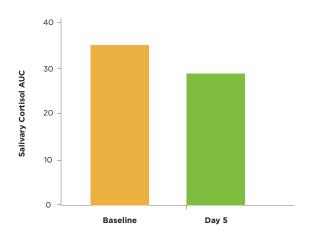
Purple = Sympathomedullary Pathway

*These statements have not been evaluated by the Food and Drug Administration.
This product is not intended to diagnose, treat, cure or prevent any disease.

MORE SCIENCE BEHIND CALM

Figure 1. HPA Axis and Cortisol Metabolism

Stress, Cortisol, and Weight


Cortisol secretion follows a marked circadian pattern and increases in response to stress through activation of the HPA axis16

Adipocytes (fat cells) play a major role in the body's production of cortisol17

High stress has been linked to less healthy dietary behaviors and increased body weight¹⁸

- Cortisol inhibits the secretion and actions of insulin (glucose uptake, central appetite reduction)19
- Cortisol promotes the maturation of adipocytes (fat cells)²⁰
- Upregulation of the enzyme 11β-HSD1 promotes fat accumulation by increasing cortisol levels²⁰
- Elevated bedtime cortisol levels are associated with increased abdominal fat21

Figure 2. Calm CP Lowers Cortisol^{22*}

Proven Benefits of Calm CP

A randomized study with corosolic acid was shown to significantly lower blood glucose levels3*

- 10 subjects were pre-screened and selected to receive corosolic acid once daily for 15 days³
- Blood glucose levels were 20-30% lower after two weeks^{3*}

The effectiveness of Calm CP was analyzed in a study

- Participants were prescreened for elevated cortisol levels
- Calm CP (2 capsules twice daily for 4 days) significantly lowered total daily cortisol levels (area under the curve - AUC) compared to baseline values (day 0)22* (2 capsules twice daily for 4 days) (Figure 2)^{22*}
- Calm CP decreased mean daily cortisol levels by 17%^{22*}
- 71% of participants reported they would take Calm CP again

Concerned about memory?

Learn more about ImmuWell at www.neuroscienceinc.com/products/immuwell

- Rollinger J, et al. Bioorg Med Chem. 2010;18(4):1507-15. Patel H, et al. Arabian Journal of Chemistry. 2015. Judy W, et al. J Ethnopharmacol. 2003;87(1):115-7.
- Glade M and Smith K. Nutrition. 2015;31(6):781-6. Kawai N, et al. Amino Acids. 2012;42(6):2129-37.
- Kawai N, et al. Neuropsychopharmacology. 2015;40(6):1405-16. Kumari N, et al. Adv Exp Med Biol. 2013;775:19-27. Shimada K, et al. Adv Exp Med Biol. 2015;803:581-96. Kletke O, et al. PLoS One. 2013;8(4):e61733.

- Gou Z, et al. Dongwuxue Yanjiu. 2012;33(E5-6):E75-81.
- Mohler H. Neuropharmacology. 2012;62(1):42-53. Saper C, et al. Nature. 2005;437(7063):1257-63.
- Lee D. et al. BMB Rep. 2015;48(4):209-16.
- Lee D, et al. BMB Rep. 2015;48(4):209-16.
 Krizanova O, et al. Stress. 2016;19(4):419-28.
 Elder G, et al. Sleep Med Rev. 2014;18(3):215-24.
 Incollingo Rodriguez A, et al. Psychoneuroendocrinology. 2015;62:201-18.
 Moore C and Cunningham S. J Acad Nutr Diet. 2012;112(4):518-26.
 Andrews R and Walker B. Clin Sci (London). 1999;96(5):513-23.
 Peckett A, et al. Metabolism. 2011;60(11):1500-10.

- Abraham S, et al. Obesity (Silver Spring). 2013;21(1):E105-17
- Data on file. 2012. NeuroScience, Inc., Osceola, WI 54020
- *These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.